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1. Theoretical Background
1.1. Introduction

Let A be a real m X»n matrix with m = n. It is well known (cf. 4]} that

A=UZVT )
where
UTU=VTV=VVT=], and X =diag(o,...,0,).

The matrix U consists of # orthonormalized eigenvectors associated with the
n largest eigenvalues of 4 A7, and the matrix ¥ consists of the orthonormalized
eigenvectors of A7 A. The diagonal elements of X' are the non-negative square
roots of the eigenvalues of A7 4 ; they are called singular values. We shall assume
that

0,202 20,20,

Thus if rank(4)=r, 6, ,=0,. 5= -- =0,=0. The decomposition (1) is called
the singular value decomposition (SVD).

There are alternative representations to that given by (1). We may write

A=T, (%) VT with UTU,=I,

or
A=UZVT with UTU,=VTV,=1, and X, =diagles,,...,0,).

We use the form (1), however, since it is most useful for computational purposes.

If the matrix U is not needed, it would appear that one could apply the usual
diagonalization algorithms to the symmetric matrix 474 which has to be formed
explicitly. However, as in the case of linear least squares problems, the com-

* Editor’s note. In this fascicle, prepublication of algorithms from the Linear
Algebra series of the Handbook for Automatic Computation is continued. Algorithms
are published in ALGOL 60 reference language as approved by the IFIP. Contributions
in this series should be styled after the most recently published ones.

** The work of this author was in part supported by the National Science Founda-
tion and Office of Naval Research.
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putation of 4T A involves unnecessary numerical inaccuracy. For example, let

1 1
A=1i{8 0},

0 p
then

4 -+ B2 1

ATA = B
1 14

so that

o (4)=(2+p, oy(4)=|8].

If B2<g,, the machine precision, the computed A7 A4 has the form [1 1} , and
the best one may obtain from diagonalization is &, = /2, §,=0. 11

To compute the singular value decomposition of a given matrix 4, Forsythe
and Henrici [2], Hestenes [8], and Kogbetliantz [9] proposed methods based
on plane rotations. Kublanovskaya [10] suggested a Q R-type method. The
program described below first uses Householder transformations to reduce 4 to
bidiagonal form, and then the @ R algorithm to find the singular values of the
bidiagonal matrix. The two phases properly combined produce the singular value
decomposition of 4.

1.2. Reduction to Bidiagonal Form

It was shown in [6] how to construct two finite sequences of Householder
transformations
P® = [ 240 xBT  (h=1,2, ..., %)
and
QW =T —29y®yWT (=12, ..., n—2)

(where 27 x® = y®74® — 1) such that

ql &y O = o - 0 7]
g2 %3 O
P(ﬂ)“'P(I)AQ(I)“.Q(m-z): 0 E]“’),
O » . - 6n
9n
0 }m =)

an upper bidiagonal matrix. If we let AW = 4 and define
AB+D = p&) (B (k=1,2,...,n)
A®D = JRHHGE (R 1,2, ..., n—2)
then P® is determined such that
itV e=0 (i=k+1,...,m)

and Q® such that .
V=0 (f=h+2,...,%).



Singular Value Decomposition and Least Squares Solutions. G. H. Golub et al. 405

The singular values of J® are the same as those of A. Thus, if the singular
value decomposition of JO —GEHT

A—PGZHTQT
so that U= PG, V =QH with P=PW  P" Q=00  Qnr-3

then

1.3. Singular Value Decomposition of the Bidtagonal Matrix
By a variant of the Q R algorithm, the matrix J(©® is iteratively diagonalized

so that JO 5 JO 5. ¥

where JEH = SOT 76 76,

and S¥, T are orthogonal. The matrices T% are chosen so that the sequence
M® = J&T 16 converges to a diagonal matrix while the matrices S® are chosen
so that all J® are of the bidiagonal form. In [7], another technique for deriving
{S¥} and {T®} is given but this is equivalent to the method described below.

For notational convenience, we drop the suffix and use the notation
JE](-”, ]'E](%H), SES(i), T = T(i), ME]T]' MEfT]—

The transition J—J is achieved by application of Givens rotations to J altern-
ately from the right and the left. Thus

J=SISl_4...STJLT,...T, (2
ST T
where
) k—1) () _
1 0
0 0
1
S _ cos B, —sin g, (k—1)
L sinf, cosf, (k)
1
0 o0

and T, is defined analogously to S, with ¢, instead of §,.

Let the first angle, p,, be arbitrary while all the other angles are chosen so
that [ has the same form as J. Thus,

T, annihilates nothing, generates an entry {J},,
ST annihilates {J},;,  generates an entry {J};3,
T, annihilates {J},;,  generates an entry {/}s,, (3)

and finally
(See Fig. 1.)

28*

ST annihilates {J}, ,_,, and generates nothing.
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/ / ”
wdlA
%
7))
N ®
%/
[ /
* / 7%
This process is frequently described as ““chasing”. Since J=S7J T,
M=]J"]=T"MT

Fig.1

and M is a tri-diagonal matrix just as M is. We show that the first angle, g,,
which is still undetermined, can be chosen so that the transition M —-M is a
Q R transformation with a given shift s.

The usual Q R algorithm with shifts is described as follows:
M—sl=TR,

RT,4+sI=M, @

where TXT,=1I and R, is an upper triangular matrix. Thus M,=TTMT,. It
has been shown by Francis [5] that it is not necessary to compute {4} explicitly
but it is possible to perform the shift implicitly. Let T be for the moment an
arbitrary matrix such that

(Tha={Th, (k=1,2,..., %),

(i.e., the elements of the first column of 7| are equal to the first column of T) and
T*T=1I.

Then we have the following theorem (Francis): If
\M=T"MT,
iy M is a tri-diagonal matrix,
iii) the sub-diagonal elements of M are non-zero,

it follows that M= DM D where D is a diagonal matrix whose diagonal elements
are +1.

Thus choosing T, in (3) such that its first column is proportional to that of
M —s1, the same is true for the first column of the product T'= 1, T; ... T, which
therefore is identical to that of T,. Hence, if the sub-diagonal of M does not
contain any non-zero entry the conditions of the Francis theorem are fulfilled
and T is therefore identical to 7, {up to a scaling of column +1). Thus the
transition (2) is equivalent to the Q R transformation of J7 J with a given shift s.

The shift parameter s is determined by an eigenvalue of the lower 2 X 2 minor
of M. Wilkinson [13] has shown that for this choice of s, the method converges
globally and almost always cubically.
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1.4, Test for Convergence

If |e,| =<4, a prescribed tolerance, then |g,| is accepted as a singular value,
and the order of the matrix is dropped by one. If, however, |¢,| =6 for k===,
the matrix breaks into two, and the singular values of each block may be com-
puted independently.

If g,=0, then at least one singular value must be equal to zero. In the absence
of roundoff error, the matrix will break if a shift of zero is performed. Now,
suppose at some stage PAES)

At this stage an extra sequence of Givens rotations is applied from the left
to J involving rows (&, k+1), (b &2 +2), ..., (k n) so that

€41 ="{J hs r+1 is annihilated, but {J}, 442, {J}s41,4 are generated,
{J i x+2 is annihilated, but {J}, si3, {J}e12,» are generated,

and finally { ]}k,n is annihilated, and { J }”' » 1s generated.

The matrix obtained thusly has the form
(k)

“?1 €y 7
T
J= 7 O (%).

Oty Trt1 Prie

NG
®

0

0,

3
|

Note that by orthogonality
Bt &t Fo=g=0

Thus choosing 8= [/}, &, (g, the machine precision) ensures that all §, are
less in magnitude than ¢,]/|,. Elements of J not greater than this are neg-
lected. Hence J breaks up into two parts which may be treated independently.

2. Applicability
There are a large number of applications of the singular value decomposition;
an extensive list is given in [7]. Some of these are as follows:

2.1. Pseudoinverse ( Procedure SVD)

Let 4 be a real m X matrix. An nXm matrix X is said to be the pseudo-
inverse of A if X satisfies the following four properties:
) AXA=A4,
i) X4X=X,
i) (AX)T=4X,
iv) (X4)'=X4.
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The unique solution is denoted by A*. It is easy to verify that if 4=UZXV7,
then A*=V X* U7 where X* =diag(s}) and

. /Ifﬂ'@ for O'@>0
g; = .
0 for o0,=0.

Thus the pseudoinverse may easily be computed from the output provided by
the procedure SVD.

2.2. Solution of Homogeneous Equations (Procedure SVD or Procedure Minfit)
Let A be a matrix of rank 7, and suppose we wish to solve

Ax;=0 for i=r+1,...,n

where 8 denotes the null vector.

Let
U=[uy, %49, ..., u,] and V=7[v,,v,,...,9,].

Then since dv;=o0;u; (t=1,2,...n),

Av;=0 for i=r+4+1,...,n
and x,=v,.
Here the procedure SVD or the procedure Minfit with p =0 may be used
for determining the solution. If the rank of 4 is known, then a modification of
the algorithm of Businger and Golub [1] may be used.

2.3. Solutions of Minimal Length ( Procedure Minfit)
Let &, be a given vector. Suppose we wish to determine a vector x so that

|8, — A %[, = min (5)

If the rank of 4 is less than # then there is no unique solution. Thus we require
amongst all » which satisfy (5) that
|]}p = min
and this solution is unique. It is easy to verify that
E=A*by=VI'UTh=VZ*,.
The procedure Minfit with >0 will yield V, 2, ¢, ..., ¢,. Thus the user is able

to determine which singular values are to be declared as zero.

2.4. A Generalization of the Least Squares Problem ( Procedure SVD)

Let A4 be a real m X#» matrix of rank # and let 5 be a given vector. We wish
to construct a vector x such that

and
trace(4ATAA) + K2 AT Ab=min.
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Here K >0 is a given weight and the standard problem is obtained for K —0.
Introducing the angmented matrices A= (4, Kb) and A4 = (44, KAb) and the

vector
_ x
=\ k)

we have to minimize trace (44T AA) under the constraint (4 +A4A)%=0. For
fixed ¥ the minimum is attained for 44 = — A% x7/Z" % and it has the value
#T AT A z/x" %. Minimizing with respect to ¥ amounts to the computation of the
smallest singular value of the matrix 4 and % is the corresponding column of
the matrix ¥ in the decomposition (1) with proper normalization [3].

3. Formal Parameter List
3.1. Input to Procedure SVD

m number of rows of A, m =mn.

n number of columns of 4.

withu true if U is desired, false otherwise.

withy true if 1V is desired, false otherwise.

eps a constant used in the test for convergence (see Sec-
tion 5, (iii)); should not be smaller than the machine
precision g, i.e., the smallest number for which
14 g,>1 in computer arithmetic.

tol a machine dependent constant which should be set
equal to BJe, where § is the smallest positive number
representable in the computer, see [11].

afl:m, 1:n] represents the matrix 4 to be decomposed.

Output of procedure SVD.
q[1:n] a vector holding the singular values of 4 ; they are non-

ultim, 1:%]

negative but not necessarily ordered in decreasing se-
quence.
represents the matrix U with orthonormalized columns
(if withu is true, otherwise # is used as a working
storage).

v[1:n,1:%] represents the orthogonal matrix V' (if withv is true,
otherwise v is not used).
3.2. Input to Procedure Minfit

m number of rows of 4.

7 number of columns of 4.

P number of columns of B, $=0.

eps same as for procedure SVD.

tol same as for procedure SVD.

ab[1:max(m,n), 1:n+p]

abli, 7] represents 4, ;, 1=1<m, 1Sj=mn,
ab[i, n +7] represents b, ;, 1= t<m, 1=7=p.
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Output of procedure Minfit.

abl1:max(m,n), 1:n+p] abli, §] represents v lsiEn, 157150,
abli, n +4-7] represents ¢; ;, 1=t <max(m,n), 1=7j=p
viz. C=UTB.

gi1:n] same as for procedure SVD.

4. ALGOL Programs
procedure SVD (m, n, withu, withy, eps, tol) data: (a) result: (g, u, v);
value m, n, withu, withv, eps, tol;
integer m, ;
Boolean withu, withy;
real eps, tol;
array a, g, %, v;

comment Computation of the singular values and complete orthogonal decom-
position of a real rectangular matrix 4,

A=Udiag(q) V', U'U=V"V=I,

where the arrays a{t:m,1:n], u[1:m,1:%], v[1:n,1:%], ¢[1:n] re-
present A, U, V, ¢ respectively. The actual parameters corresponding
to a,u, v may all be identical unless withy = withy = true. In this
case, the actual parameters corresponding to # and v must differ.
m =n is assumed;
begin

integer 4,4, £, 1, 11;

realc,f, g, h, 5 %, 9, 2;

array e[1:#n];

for i:= 1 step 1 until m do

for j:=1 step 1 until » do u[7, j] := afs, §];

comment Householder’s reduction to bidiagonal form;

g:=%x:=0;
for i:= 1 step 1 until » do
begin

eili=g; s:==0; [:=141;
for j:= i step 1 until m do s := s +u[f, ]12;
if s<Ctol then g:= 0 else
begin
fi=u[i,4]; g:= if f<<O then sgrt(s) else —sgri(s);
hi=fxg—s; u[i,i]:=f—g;
for j:== [ step 1 until » do
begin
§:==0;
for k= ¢ step 1 until m do s :== s u[Rk, 1] Xulk, {];
f:=slh;
for k.= { step 1 until m do u[k, j]:= ulk, 1]+ f xXulk, 1]
end §
ends;
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qli]:=g; s:=0;
for j:= ] step 1 until » do s:= s +u[7, {]12;
if s<Cfol then g := 0 else
begin
Fr=uli,14+1]; g:= i f<< 0 then sgrt(s) else —sgri(s);
hi=fxg—s; uli,i +1]:=f—g;
for j:= [ step 1 until »n do ¢[j]:= u[i, {i/h;
for j:= [ step 1 until m do
begin
§:=0;
for k:= [ step 1 until n do s:= s +ulj, k] Xu[z, k];
for k:= [ step 1 until » do «[j, k] :== u[], k] + s Xe[k]
end §
end s;
y = abs(q[]) +abs(e[s]); if y> x then x 1=y
end 7;

comment accumulation of right-hand transformations;
if withv then for i := n step —1 until 1 do

begin
if g ==0 then
begin
hi=ufl,i4+1] X g;
for j:= I step 1 until » do v[j, ¢] 1= u[%, j1/k;
for j:= [ step 1 until » do
begin
s:=0;
for k:= [ step 1 until n do s:= s+ u[i, 2] Xv[k, j];
for k.= [ step 1 until » do v[%, j] := v[&, 7] +sXv[R, 1]
end s
end g;
for j:== [ step 1 until #» do v[7, j]:= v[f, ¢] := 0;
o[, )= 1; gi=eli]; [i=1
end 7;

comment accumulation of left-hand transformations;
if withu then for ; := n step —1 until 1 do
begin
Lr=1-4+1; gi=qli];
for j:= I step 1 until » do uf7, j]:=0;
if g==0 then
begin
k= ul1,1]Xg;
for j:= [ step 1 until n do

411
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begin
s:i= 0;
for % := [ step 1 until m do s 1= s +ulk, i] xulk, §];
= s[h;
for k:= { step 1 until m do [k, /] := ulk, §] -+ Xu[k, 1]
end 7;
for ;:= 7 step 1 until m do u[j, 7] := uly, i]/g
end g

else for j:== i step 1 until m do u[{, ¢} :=0;
i, 1) 1= uls, 1] +1
end {;

comment diagonalization of the bidiagonal form;
eps 1= eps X x;
for k:= #» step —1 until 1 do
begin
test | splitting:
for [:= % step —1 until 1 do
begin
if abs (e[l]) < eps then goto fest | convergence;
if abs (q[l —17) < eps then goto cancellation
end /;

comment cancellation of e[l} if I>1;
cancellation:

c:=0; s=4; ll:=1-1;

for i := [ step 1 until t do

begin
fi=sxel[i]; e[t] 1= ¢ xe[t];
if abs{f) =< eps then goto test f convergence;
g:=q[i]; h:=qi]:= sqre(f Xf+gxg); c:=glh; s:= —[[h;
if withu then for j == 1 step 1 until m do

begin
y == ulq, l1]; z:=ul],];
u[f, 11} :=yxXc+2Xs; uf,i] = —yXs+zXc
endj
end 7;

test | convergence:
z:= q[k]; if I=F then goto convergence;

comment shift from bottom 2 X2 minor;
x:=qll]; y:=qlk—1]; g:= e[k —1]; h:=e[k];
fi=(y —2) X (y+2) +{g—h) x(g + M) /(2 Xk XYy); g:= sqri(f xX[+1);
fi= ((x—2) X (x +2) + A2 x (y/(if /<0 then f —¢ else [ {g) —h))/x;

I

comment next ¢ R transformation;
ci=s5:=1;
for i:= /-1 step 1 until & do
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begin
g:=1e[i]; yi=qld]; hi=sXg; g:=cXg;
et —1]i= z2:=sqgrt(f X[+ hXh); c:= fz; s:= hz;

frs= AXeH+gXs; gi= —aXs+gXc; hi=yXs; ¥i=yXc;
if withy then for j:= 1 step 1 until » do
begin
x==v{], 1 —1]; z:=9[],];
v[f, i —1]:= xXe+2Xs; v[f, t]:= —xXs-+2Xc
end 7;
gli— 1] = z:=sqgrt(f Xf +hXh); c:= flz; s:= hlz;
fi=mexXgdsXy; x:= —sxg-+cXy;
if withu then for j:= 1 step 1 until m do
begin
yi=ulf, i —1]; z:=ulf, 1];
wlj, it —1]:=yXc+zXs; uff,1]:= —yxs+zxc
end
end 7;
e[l]:==0; e[k]:=f; q[k] := x; goto lest { splitting;
convergence:
if z<C 0 then
begin comment ¢[%] is made non-negative;
q(k] = —2z;
if withv then for j := 1 step 1 until #» do v[j, &] 1= —vlj, k]
end z
end %
end SVD;

procedure Minfit (m, n, p, eps, tol) trans: (ab) result: (q);
value m, n, p, eps, tol;
integer m, n, p;
real ¢ps, tol;
array ab, ¢;

comment Computation of the matrices diag(g), ¥, and C such that for given
real m X# matrix 4 and m Xp matrix B

U AV = diag(g) and U! B = C with orthogonal matrices U, and V.

The singular values and the matrices V' and C may be used to de-
termine X minimizing (1) |4 X — Bz and (2) | X |y with the solution

X =V x Pseudo-inverse of diag(g) xC.

The procedure can also be used to determine the complete solution
of an underdetermined linear system, i.e., rank(4) =m<#.

The array ¢[1:#n] represents the matrix diag(g). 4 and B together
are to be given as the first mrows of the array ab{1 :max (m,n),1:n+p].
V is returned in the first #» rows and columns of ab while C is returned
in the last $ columns of ab (if » > 0);
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begin
integer ¢, 4, £, 1,11, nl, np;
realc, /g A, s, %9, 2;
array e[1:#];

comment Householder’s reduction to bidiagonal form;
gi=x1=0; np:=n-+p,
for 7 := 1 step 1 until » do
begin
e[i)=g; s:=0; l:=1+41;
for j:= i step 1 until m do s := s - ab[{, i112;
if s<(tol then g:= 0 else
begin
i= ablt, 1]; g:= if f<C O then sqrt(s) else —sgri(s);
hi=fxXg—s; abli, 1] 1= f—g;
for j:= [ step 1 until »p do
begin
§:=0;
for & := ¢ step 1 until m do s:= s + ab[k, t] xab[k, j1;
J:=s/h;
for k:= ¢ step 1 until m do ablk, §] := ablk, §] +f Xab[k, 7]
end §
ends;
gli]i=g; s:=0;
if i < m then for j := [ step 1 until » do s:= s} ab[i, j112;
if s<tol then g:= 0 else
begin
fi=abli, i +1]; g:=if f<C 0 then sgri(s) else —sgri(s);
hi=fxg—s; abli,i +1]:=f—g;
for j:= | step 1 until » do ¢[j] := ab[4, 1]/h;
for j:= I step 1 until » do
begin
s:=0;
for k:= [ step 1 until » do s := s+ ab[j, k] xabls, ];
for z:= [ step 1 until » do ab{j, k] := ablj, k] -+ s Xe[k]
end
end s;
y 1= abs(q[i]) + abs(e[s)); if y> x then x:=y
end 7;

comment accumulation of right-hand transformations;
for i := n step —1 until 1 do
begin
if g==0 then
begin
hi=abli, i +1]xg;
for j:= I step 1 until » do ab[j, ¢] := ab[i, 7]/k;
for j:= 1 step 1 until » do
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begin
s:=0;
for k:= [ step 1 until n do s := s+ ab[¢, k] xab[%, 1];
for % := 1 step 1 until n do ab[k, j] := ab[k, §] + s Xab[k, 1]
end
end g;
for j:= I step 1 until » do ab[7, j] := ab[4,i] := 0;
abfz,1]:=1; g:=e[1]; I:=1
end :;
epsi=epsXx; nl:=n-+41;
for i:= m +1 step 1 until » do
for j:= nl step 1 until np do abd[%, ] := 0;

comment diagonalization of the bidiagonal form;
for k.= n step —1 until 1 do
begin
test [ splitting:
for /.= % step —1 until 1 do
begin
if abs(e[l]}) < eps then goto fest | convergence;
if abs(g[l —1]) < eps then goto cancellation
end /;

comment cancellation of e[l] if I>1;
cancellation
ci=0; s:=1; ll:=1—1;
for i:= [ step 1 until & do
begin
f:=sXe[t]; e[d] := cXeli];
if abs (f) < eps then goto test f convergence;

g:=qli]; qli] = h:=sqrt(fXf+gxg); c:=glh; s:= —f[h;
for j:= nl step 1 until zp do
begin
y:= ab[ll, {]; z:= abfs, 1];
ab{ll, j]l:=cXy+sXz; ab[i,]]:= —sXy+cXz
end
end 7;

test | convergence:
z:= q[k]; if I=% then goto convergence;

comment shift from bottom 2 X 2 minor;

= q[l]; y:=qlk—1]; g:= e[k —1]; h:= e[k];

({y —2)X(y+2) + (g —h) X (g +h)[(2xhxy); g:=sqri(f X} +1);
((x —2) X (x +2) +hx(y/(if f<<O then f —g else f - g) —h))/x;

i

X
/:
f:

comment next Q R transformation;
c:=s:=1;
for i:= 11 step 1 until kz do
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begin
=[], yi==gq[i]; hi=sXg; gi=cXg;
e[t — 1] 1= z:=sqrt{f Xf + A Xh); c:= flz; s:= hlz;

== A XCgXS; gi= —aXs+gXe; hi=yXs; yi=yXc;
for j:== 1 step 1 until » do
begin
x == ablf, 1 —1]; z:= ably, ¢];
ablf, i —4]:1= xXc+zXxs; ab[f,i]:= —xXs-+z2Xc
end j;
qit —1] 1= zi=sqrt(f Xf 3 h X h); c:= flz; s:= hfz;
fi=cXg4sXy;, x1= —sXg+cXy;
for j:== nl step 1 until »p do
begin
y == abli—1,7]; z:= ab[4, 1};
ab[i —1,7]:=cXy—+sxz; abli,f]:= —sXy-+cxz
end j
end ¢;
ell] 1= 0; e[k]:==f; qlk] := x; goto fest | splitting;
convergence:
if 2<C 0 then
begin comment g[£] is made non-negative;
glk] := —z;
for j:== 1 step 1 until » do 4b[j, k] := —ab[j, £
end z
end &

end Minfit;

5. Organizational and Notational Details

(i) The matrix U consists of the first # columns of an orthogonal matrix U,.
The following modification of the procedure SVD would produce U, instead of U:
After

comment accumulation of left-hand transformations;
insert a statement
if withu then for ¢ :== n -1 step 1 until m do

begin
for j:=n -1 step 1 until m do u[4, j]:= 0;
ult,1]:=1

end 7;

Moreover, replace # by m in the fourth and eighth line after that, ie., write
twice for j := [ step 1 until m do.

{(ii} m =» is assumed for procedure SVD. This is no restriction; if m<n,
store A7, i.e., use an array af[1:#, 1:m] where at[i, {] represents a; ; and call
SVD (n, m, withv, withu, eps, tol, at, q, v, ) producing the m Xxm matrix U and
the #» Xm matrix V. There is no restriction on the values of m and » for the
procedure Minfit.
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(ifi) In the iterative part of the procedures an element of J® is considered
to be negligible and is consequently replaced by zero if it is not larger in magnitude
than ex where ¢ is the given tolerance and

x==max (|¢;]| +]e])-

15isn
The largest singular value o, is bounded by /)2 <qy < x}/2.

{iv) A program organization was chosen which allows us to save storage loca-
tions. To this end the actual parameters corresponding to a and # may be identical.
In this event the original information stored in « is overwritten by information
on the reduction. This, in turn, is overwritten by # if the latter is desired. Like-
wise, the actual parameters corresponding to 2 and v may agree. Then v is stored
in the upper part of « if it is desired, otherwise @ is not changed. Finally, all
three parameters ¢, #, and v may be identical unless withu = withy —=true.

This special feature, however, increases the number of multiplications needed
to form U roughly by a factor m/n.

{(v) Shifts are evaluated in a way as to reduce the danger of overflow or under-
flow of exponents.

(vi} The singular values as delivered in the array ¢ are not necessarily ordered.
Any sorting of them should be accompanied by the corresponding sorting of the
columns of U and V, and of the rows of C.

(vii) The formal parameter list may be completed by the addition of a limit
for the number of iterations to be performed, and by the addition of a failure
exit to be taken if no convergence is reached after the specified number of itera-
tions (e.g., 30 per singular value).

6. Numerical Properties

The stability of the Householder transformations has been demonstrated by
Wilkinson [12]. In addition, he has shown that in the absence of roundoff the
Q R algorithm has global convergence and asymptotically is almost always cubically
convergent.

The numerical experiments indicate that the average number of complete
QR iterations on the bidiagonal matrix is usually less than two per singular
value. Extra consideration must be given to the implicit shift technique which
fails for a split matrix. The difficulties arise when there are small ¢,’s or ¢;’s.
Using the techniques of Section 1.4, there cannot be numerical instability since
stable orthogonal transformations are used but under special circumstances there
may be a slowdown in the rate of convergence.

7. Test Results

Tests were carried out on the UNIVAC 1108 Computer of the Andrew R. Jen-
nings Computing Center of Case Western Reserve University. Floating point
numbers are represented by a normalized 27 bit mantissa and a 7 bitexponent
to the radix 2, whence eps=1.5,5 —8, lol =5 —31. In the following, computed

values are marked by a tilde and m (4) denotes max|a, ,|.
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First example:

2 10 2 3 7 -1 1 0
14 7 10 o0 8 2 —1 1
-1 13 —1 —11 3 110 1
|22 e ol 4 o0 4 ’
9 8 1 —2 4 0 —6 —6
9 1 —7 5 —1 —-3 6 3
2 —6 6 5 1 1 11 12
| 4 5 0 —2 2] 0 —5 —5|

01=V12481 0'2=20, ngvggz, 0'4:::0‘530‘

The homogeneous system Ax =0 has two linearly independent solutions. Six
Q R transformations were necessary to drop all off-diagonal elements below the
internal tolerance 46.4,,—8. Table 1 gives the singular values in the sequence
as computed by procedures SVD and Minfit. The accuracy of the achieved de-
composition is characterized by

m(d ~U3VT)=238,—8, m(TTU—1)=8.1,,—8, m(PVTV—I)=33,,—38.

Because two singular values are equal to zero, the procedures SV.D and Minfit
may lead to other orderings of the singular values for this matrix when other
tolerances are used.

Table 1
8 o — 8y
0.9615—7 9.6
19.595916 191
15.999 999 143 X 10™8
1.970—7 —19.7
35.327038 518

The computed solutions of the homogeneous system are given by the first
and fourth columns of the matrix ¥ (Table 2).

Table 2
1 (A vy — Ty vy
—0.4190 9545 0 - 1.5 0 (Def.)
0.4405 0912 0.4185 4806 1.7 0.6
—0.0520 0457 0.3487 9006 1.2 —1.3 X 1078
0.6760 5915 0.2441 53058 1.0 0.3
0.4129 7730 —0.80221713 1.3 - 0.8
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Procedure Minfit was used to compute the solutions of the minimization
problem of Section 2.3 corresponding to the three right-hand sides as given by
the columns of the matrix B. Table 3 lists the exact solutions and the results
obtained when the first and fourth values in Table 1 are replaced by zero.

Table 3
EA Xy #3 % %y %3
—1/12 0 —1/12 —0.0833 3333 0.173 — 8 —0.0833 3333
0 0 0 —0.58,,—8 —1.09;p— 8 ~1.11;4—8
1/4 0 1/4 0.2500 0002 1.550—8 0.2500 0003
—1/12 0 —1/12 —0.0833 3332 0.741— 8 ~0,0833 3332
1/12 0 1/12 0.0833 3334 0.33;p— 8 0.0833 3334
Residual i
0 873 8Vs

A second example is the 20 X 21 matrix with entries

0 i i>g .
e . 121520
a; ;=321 —1 if i=7 .
’ Lo o A=sis2
—1 if i<g

which has orthogonal rows and singular values oy, =Vk(k+1), k=0, ..., 20.
Theoretically, the Householder reduction should produce a matrix J© with
diagonal —20, 0, ..., 0 and super-diagonal —}/20, 65, ..., 03. Under the influence
of rounding errors a totally different matrix results. However, within working
accuracy its singular values agree with those of the original matrix. Convergence
is reached after 32 QR transformations and the &,, k=1, ..., 20 are correct
within several units in the last digit, &y =1.61,9 —11.

A third example is obtained if the diagonal of the foregoing example is
changed to

This matrix has a cluster of singular values, oy, t0 0y, lying between 1.5 and 1.6,
03 =2, 0y = 0. Clusters, in general, have a tendency to reduce the number of
required iterations; in this example, 26 iterations were necessary for convergence.
891 =1.49;p—8 is found in eighteenth position and the corresponding column
of ¥ differs from the unique solution of the homogeneous system by less than
3.4, — 8 in any component.

A second test was made by Dr. Peter Businger on the CDC 6600.

A third test was performed on the IBM 360/67 at Stanford University. The
example nsed was the 30 X 30 matrix with entries

0 if i>j
1 i<y

The computed singular values are given in Table 4.

2¢ Numer, Math,, Bd, 14



420 Handbook Series Linear Algebra: Singular Value Decomposition. Golub et al.

Table 4. Singular values

18.2029 0555 7529 2200 6.2231 9652 2604 2340 3.9134 8020 33356160 2.9767 9450 2557 7960
2.4904 5062 9660 3570 2.2032 0757 4479 9280 2.0191 8365 4054 5860 1.8943 4154 7685 6890
1.8059 1912 6612 3070 1.7411 3576 7747 9500 1.6923 5654 4395 2610 1.6547 9302 7369 3370
1.6253 2089 2877 9290 1.6018 3335 6666 2670 1.5828 6958 8713 6990 1.5673 9214 4480 0070
1.5546 4889 0109 3720 1.5440 8471 4076 0510 1.5352 8356 5544 9020 1.5279 2951 2160 3040
1.5217 8003 9063 4950 1.5166 4741 2836 7840 1.5123 8547 3899 6950 1.5088 8015 6801 8850
1.5060 4262 0723 9700 1.5038 0424 3812 6520 1.5021 1297 6754 0060 1.5009 3071 1977 0610
1.5002 3143 4775 4370 0.0000 0000 2793 9677

Note that g0, & 1.53 X1071® so that this matrix is very close to being a
matrix of rank 29 even though the determinant equals 1.
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